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GENERATING POSITIVELY CORRELATED RANDOM VARIABLES FROM A
SEQUENCE OF INDEPENDENT RANDOM VARIABLES WITH SYMMETRIC
LOGARITHMICALLY CONCAVE DENSITIES

by

Mohamed Abdel-Hameed and Frank Proschan

ABSTRACT

Let X = (3(_1,... ,)S‘) be independent random variables with
logarithmically concave symmetric densities. We show that for
any logarithmically concave functions f and g on R" that are
invariant under sign changes,

Cov(£(X),8(X)) 2 0.
Bounds on the values of logarithmically concave densities on R

evaluated at the mean vector are also given.

QSR FORCE OFFPICE OF SCIERTIFIC RESEAR™Y ’.'?_S"‘"
TICE OF TRANSMITTAL TO DTIC

This techaical r-vry

approved fo-

Distributiog i imit

MATTHEW J. KERPER

Chier, Techntical Information Divislon

t hng Been ro- ¢

Bt 12 o5 24 4




------

/ I. INTRODUCTION AND SUMMARY.

The area of positive and negative dependence of multivariate
distributions has attracted the attention of many authors over the
past decade. (See Abdel-Hameed and Sampson (1978), Jogdeo (1977),
Kanter (1975), Karlin and Rinott (1980), Dykstra (1980), and Prekopa
(1973).) Pitt (1977) proves that if n(x) is the standard normal
density on R2 and if A and B are balanced convex subsets of R? (i.e.,

A=-A and B=-B) then

[ n(x)dx 2 (fn(x)dx) (fn(x)dx).
AnB A B

The question whether Pitt's result is true for any standard normal
density on R“, n>2, remains unanswered.

— In this paper we investigate covariance inequalities for a class
of logarithmically concave densities. We show that if xl, S xn
sre independent random variables each having a symmetric logarithmically
concave symmetric density, then the random variables Yl = f(xl,...,xh)
and Yz = g(xl,...,xh) are positively correlated whenever f and g belong
to a certain class of logarithmically concave functions on R'. In

particular it follows that if A and B are subsets of Rn that are sym-

metric along all the axes, then

| h(x)dx 2 (Jh(x)dx) ([h(x)dx),
AnB A B

where h is the joint density of the independent random variables
Xl, St xn. We remark that a subset of R that is symmetric along

all the axes is necessarily a balanced set and it follows that if
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(xl... 3 .xn) is a standard normal vector, with density n then

AnB
for all subsets A and B of R" that are symmetric along all axes.

[ n(x)dx 2 ({n(x)dx) (£n(x)dx)

Throughout, the word "symmetric'" will be used to mean "symmetric
about the origin". For n=1, 2, ..., let

H = (f: R"-»R*, f is logarithmically concave and symmetric},
A= {A: A is a nn diagonal matrix with diagonal elements $1},
G, = {fel : f(xA) = f(x) for all x in R, and all AeA }, and

L= {K:K is a convex symmetric subset of R'}.

Section 2. Positive Correlations of Functions of Multivariate
Random Variables with Logarithmically Concave Densities.

In this section we will show that if Xl, SR Xn are independent
random variables each having a logarithmically concave symmetric
density, then the random variables Yl' f(xl, % .xn) and Yz- g()(l Sivers ,Xn)

are positively correlated whenever f and g belong to Gn.

2.1 Theorem. Let H be a convex subset of R. Then f: HoR, is
in H if and only if the set H*={(x,2):f(X) 2 e®} is a convex subset
of R**Y ang {x : £f(x) 2 a} ..is a symmetric subset of R" for each acR+.
Proof. (If) Suppose that f is not in H . Then f is either not
logarithmically concave or not symmetric. First assume that f is not
logarithmically concave on H. Then there exists X X in H and a

in (0,1) such that

£lax,+(1-0)x,) < £1(x) £7%(x)).
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Thus the point (a51+(1-a)x »a fn f(gl) + (1-a)&n f(iz) belongs to the
line segment joining (x,,4{n f(ll)’ (52,£n £(x,)) but not in H*. Since
x,,0n f(ll)) and ch,ln £(x,)) are in H*, then H* is not convex.

If £ is not symmetric on H, then there exists in H such that

X,
f(ggo) *f(-_o). Let aos(tho) Vf(-:_to)) and “ao'{l‘f(i) zao). Then
either Xy OF -X, is in Ka but not both, contradicting the assumption
0

that Kao is symmetric.

(Only if). Let feH , (x,,2,), (x;,2,) be any two points in H*
and £ is the line joining them. Let (x,z,) be any two points in H*
and £ is the line joining them. Let (x,z) be any point on £. Then

there exists 0sa<1 such that

x = ax, + (1-a)x,,
2 =az ¢+ (l-a)zz.

z z z
Since f(il) e 1 and f(xz) 2 e 2, it follows that f(x) 2 e .

Therefore, (x,z) is in H*. Thus H* is convex.
The fact that {x:f(x) >a} is symmetric for each aeR, is immediate

since f is symmetric. ||

2.2 Corollary. Let H be a convex subset of R" and assume that

f:H*R, is in Hn‘ Then, {x:f(x) 2a)} is a convex and symmetric subset

of R" for each acR,.

Proof: The symmetry of the set {x:f(x) 2a} is proved in Theorem
2.1. Now assume that Xy» X, are in {x:f(x) 2a}. Then for a in (0,1)
we have

flax, + (1-a)x) 2 £2(x)) £ 70(x) 2 a.
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Thus, a§1+(1-a)52 is in the set and hence it is convex; since a is
arbitrary, the result follows. ||

The converse to Corollary 2.2 is not true:

Let £ be a concave symmetric function on R which is not in Hl.
Then the sets {x: f(x) 2a} are convex symmetric subsets of Rl. However
f is not in Hl‘

‘ The following lemma is due to Hoeffding and is a restatement of

Lemma 2 of Lehmann [1966].

2.3 Lemna. Let X and Y be extended-valued random variables. Then

Cov(X,Y) = £2Cw(lx-1[x.°3,ly-1[y’QJ}dxdy‘, where the

equality is valid even if one side is infinite.
2.4 Lemma. For any Kd‘n-l’ hel-ln_l, and feHn, the function
g:R+R, defined by

g(x) = ,{“"1"""‘;1-1»’9 LTCHPRE SR I SO

is in Hj.
Proof: The logconcavity of g follows from Theorem 6 of Prekopa

[1973). The symmetry of g follows from the symmetry of £, h, and k.

Thus g is in H ,as desired. ||

2.5 Theorem. Let f and g be in Hl' Suppose that (Q,F,P) is a

probability space and X is an extended-value random variable defined

on (Q,F,P). Then for each f, g in H; we have
Cov(£(x),g(x)) 2 0.
Proof: By Lemma 2.3 we have

Cov(£(X),g(X)) = !{zmv{ltx’mjof()(),I(Y’ﬂog(X)}dxdy

since

Ig,=3°f(X) = Teoapy o3ok.
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From Corollary 2.2 we know that there exists a constant a > 0

such that f'ltx,-] = [-a,al. Thus there exists an a > 0 such that

I[x.-J°f(x) = I[-a,a]°x
Similarly we conclude that there is a b> 0 such that
Tty,«3°8(%) = Irop p3°X:
Therefore,
Cov(I[x’nlof(X),I[y’.log(x)) equals

P{Xe{-[aAbl,(aAbl}}-P{XéT-a,al}-P{Xe{-b,bl},
which is clearly nonnegative. From Lemma 2.3 it follows that

Cov(£(X), g(X)) must be nonnegative. ||

2.6 Theorem. Let Xl. coes X be independent random variables
each having a density that belongs to Hl' Then for all f and g in
Gn we have Cov(f(X), g(X)) 2 0.

Proof: We proceed by induction on n. By Theorem 2.5 the result
is true for n=1. Now assume the result is true for some n,. For f

and g in H“o“ and X = (xl,....xnod). we write

Cov(£(X,g(X)) = E[Cov{£(X),g(X) |X ,,}]
0

+ CovlEE(X|Xx_ ..), Eg(X| ).

X
nod n0+1
For a fixed X e1? the function fx :Rn+R, is defined for any

(1} n0+1

X = (xl,....xno) by f"nod(xl““’x"o) = f("l""’xnod)' For 72:.;“:'.

X (xu....,xlno). Xy = (xn.....xZno), we let 5{ = ("n""”‘lno’

xnod) and x5 = (XZI""’XZno’xnod)' Then for a in (0,1),
a l-a,_ ..
fxno’.r(aglo(l-a)gz) = faxj+(1-a)x3) 2 £ (x})f " (x3)
1..
- f:n (-’-‘-1) fx ’ @2)
0*! Do+ 1
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Moreover, for any matrix A in Ah and x = (xl,...,xn ) in
0 0

R and x* = (x,,... b 4 ), we have f (xA) = f(x*A%),
- 1’ ,Klo,. no’l 2 xno"l = =

vhere A* = the (nool) % (no+1) diagonal matrix defined by A* = (32).

Ro

Since f is in Gn .1’ then we have that

0

£ (x0) = £(x*A")

X
n,+1
0 = £(x*)

= fx (x).
no+1

Therefore £ (Xy5+++5%x_ ) is in G_ . The induction hypothesis
b 4 1 n, n

n0+1 0

combined with the above argument gives

E[Cov{£(X),g(0)}| X . = 1=
0

xnoﬂ

E(Cov{fx x), 8, (xvhlzo0

no+1 n0+1

where i* = (x.l""’xno) when x = (xl""’xnod)'
From lemma 2.4 and the hypothesis, we deduce that
EE(X[X , = X, ,q) s vell as Eg(XIX, ,q = %, ,y) are in H,.
0 0 0 0
By Theorem 2.5 we have Cov(Ef(llXh *1), Eg(ZJXnO+1)} 2 0. Thus we finally
0
conclude that Cov(£(X),g(X)) 2 0.||

The proof of the following theorem can be obtained by imitating

the proof of Theorem 2.6 .

2.7 Theorem. Llet X = (xl,...,xn) be a standard normal vector

with density n. Then

J n(x)dx 2 (Jn(x)dx) (fn(x)dx).
A B

AnB

for all subsets A, B that are symmetric along all the axes.




Section 3. Bounds on Logarithmically Concave Densities.

In this section we derive some inequalities for strongly
unimodal densities. First we define for n=1,2,...,

Un s {f :Rn->R,,; f is a logarithmically concave density).

3.1 Lemma. Let f and g be functions mapping R" into R,. Then

Jfen (£/8) 2 (D) 0 (fe/[0).
In particular, if f is a density function on Rn, then
[£&n (£/g) 2 -n [g,
for any measurable function g:Rn-'R,.

Proof: First assume [f = f[g. Then

€ n(£/g) = -[£ tn(e/) 2 -[£1(e/£)-1)
[since £n x s (x-1), x 2 0]
= ff - fg = 0.
Thus the inequality is satisfied in this case.
Now, if [f = [g, then define g* = ([£/[g)g, and note that

J£ = [g*. Therefore, using the above inequality we have
J£on (£/g*) 2 0. Using the definition of g* and simplifying we
get [£on (£/g) 2 (/) &n ([£/£).]|

3.2 Theorem. Let X be a random vector with density f belonging

to U with finite mean y. Let g:R™R be such that fexp(-g) = 1, then

£(w) 2 exp(-[gf).

f

Proof: Take f1=f, fzte'g. By Lemma 3.1, we have ffl n (?L) 20.
2

Take flsf, fzte'g. Using Jensen's inequality and the fact that f




belongs to Un’ we deduce that

0s fe{en £+ g} s en £(u) + [fg,
completing the proof. ||

3.3 Theorem. Let X be a nonnegative random vector with density

f belonging to U with finite mean p. Then £(i) 2 u—x_l_x_u—e
1 .

n -x: /s
Equality is attained for f(’-‘)'lgl -i!—e xj/u and therefore the bound
i

is sharp.

. X
Proof: Choose g(x) = flog;—l— + faii-i' for x20. Then
i i

® a. -a:x./u. Hs
-g 10 i ST 1/ bt = = Ti
Je® =1 g—u doti 1. Also fgf Elog—-ai+ Za,. Thus

by Theorem 3.2, £(y) 2 ﬁ (_e . The right hand side is maxi-
mized by choosing ai=1, i:l, ..., n. Equality is attained for

8 I
f(_X_) .ial re

*I/"i a5 may be directly verified. ||

The following theorem gives a lower bound on the peak of
density function belonging to v, in terms of the determinant of

its covariance matrix.

3.4 Theorem. Let X be a multivariate vector with mean y,

covariance matrix I, and density f belonging to Un' Then

£ 2 (2m ™2 |72

exp(-n/2).
Proof: Let g(x) = %4n|z|+ (n/2) fn (2m) + K(x-p) L™ (x-p).

Then [e™8=1, and [g(x) £(x)dx = Eg(X) = %¢n|Z| + (n/2) &a (27) + n/2.

The desired conclusion then follows from Theorem 3.2 .||
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